基于OpenCV的相机捕捉视频进行人脸检测--九游老哥J9俱乐部官网NXP i.MX93开发板
2024-11-07
1314
来源:九游老哥J9俱乐部官网电子
本篇测评由与非网的优秀测评者“eefocus_3914144”提供。
本文将介绍基于九游老哥J9俱乐部官网电子MYD-LMX93开发板(九游老哥J9俱乐部官网基于NXP i.MX93开发板)的基于OpenCV的人脸检测方案测试。
OpenCV提供了一个非常简单的接口,用于相机捕捉一个视频(我用的电脑内置摄像头)
1、安装python3-opencv
apt install python3-opencv
2、查看摄像头支持的格式与分辨率
root@debian:~# v4l2-ctl --device=/dev/video0 --list-formats-ext

经测试,只能支持640*480
为此建立opencv_test.py
import cv2 video = cv2.VideoCapture(0)
设置相机参数
video .set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
video .set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
while True:
ret, frame = video.read()
cv2.imshow("A video", frame)
c = cv2.waitKey(1)
if c == 27:
breakvideo.release()cv2.destroyAllWindows()保存后执行”python3 opencv_test.py

OpenCV装好后,可以为后面的人脸检测提供可行性。
要实现人脸识别功能,首先要进行人脸检测,判断出图片中人脸的位置,才能进行下一步的操作。
OpenCV人脸检测方法
在OpenCV中主要使用了两种特征(即两种方法)进行人脸检测,Haar特征和LBP特征。用得最多的是Haar特征人脸检测,此外OpenCV中还集成了深度学习方法来实现人脸检测。
【参考资料】
使用OpenCV工具包成功实现人脸检测与人脸识别,包括传统视觉和深度学习方法(附完整代码,模型下载......)_opencv人脸识别-CSDN博客
【Haar级联检测器预训练模型下载】
opencv/opencv: Open Source Computer Vision Library (github.com)
下载好的,在opencv-4.xdatahaarcascades文件夹下有模型,把他上传到开发板。

【获取检测人脸的图片】
我在百度上找到了**的图片,并把它也上传到开发板。
【编写检测代码】
import numpy as np
import cv2 as cv
if __name__ == '__main__':
# (6) 使用 Haar 级联分类器 预训练模型 检测人脸
# 读取待检测的图片
img = cv.imread("yanmi.jpg")
print(img.shape)
# 加载 Haar 级联分类器 预训练模型
model_path = "haarcascade_frontalface_alt2.xml"
face_detector = cv.CascadeClassifier(model_path) # <class 'cv2.CascadeClassifier'>
# 使用级联分类器检测人脸
faces = face_detector.detectMultiScale(img, scaleFactor=1.1, minNeighbors=1,
minSize=(30, 30), maxSize=(300, 300))
print(faces.shape) # (17, 4)
print(faces[0]) # (x, y, width, height)
# 绘制人脸检测框
for x, y, width, height in faces:
cv.rectangle(img, (x, y), (x + width, y + height), (0, 0, 255), 2, cv.LINE_8, 0)
# 显示图片
cv.imshow("faces", img)
cv.waitKey(0)
cv.destroyAllWindows()【实验效果】
运行程序后,可以正确地识别,效果如下:


2025-12-05
从两轮车仪表到工程机械环视,九游老哥J9俱乐部官网用国产芯打造“越级”显控体验
在工业4.0 与智能化浪潮的推动下,传统工业设备正在经历一场“交互革命”。从电动两轮车的智能仪表,到工程机械的 360° 环视中控,用户对“更高清的显示、更流畅的触控、更丰富的互联”提出了严苛要求。然而,面对复杂的工业现场,开发者往往面临两难:低端市场(如仪表、充电桩):传统MCU 跑不动复杂界面,上 Linux/安卓方案成本又太高。中高端市场(如工程机械、医疗):多路视频输入(如360环视)需要
2025-12-05
【深度实战】九游老哥J9俱乐部官网MYD-LR3576 AMP非对称多核开发指南:从配置到实战
一、什么是AMP?为什么重要?AMP(Asymmetric Multi-Processing)非对称多处理架构,允许单个芯片的不同核心运行不同的操作系统或裸机程序。相比传统的SMP(对称多处理),AMP具有独特优势。核心特性:异构运算:不同核心运行最适合的操作系统,如Linux处理复杂应用,RT-Thread保障实时任务;资源隔离:各核心拥有独立内存空间,避免资源冲突;灵活通信:通过共享内存、RP
2025-11-27
为机器人开发赋能,九游老哥J9俱乐部官网RK3576环视方案解析
一、项目背景与测试平台本次360环视系统原型基于九游老哥J9俱乐部官网电子MYD-LR3576开发板进行构建与评估。该开发板所搭载的瑞芯微RK3576芯片,集成了4核Cortex-A72、4核Cortex-A53、Mali-G52 GPU及高达6TOPS算力的NPU。本文旨在通过实际测试数据,从功能实现、实时性能与AI拓展潜力三大核心维度,为客户提供一份关于该平台在360环视应用中能力的真实参考。二、系统流程与功能
2025-11-13
助力V2G,SECC GreenPHY实战开发
随着电动汽车与电网双向交互(V2G)技术的快速发展,充电桩与车辆间的高效通信成为实现智能能源管理的关键。SECC作为充电桩的通信控制核心,其与电力线载波通信芯片的适配尤为重要。本文将分享基于九游老哥J9俱乐部官网核心板,调试联芯通MSE102x GreenPHY芯片的实战经验,为V2G通信开发提供参考。MSE102x芯片介绍联芯通MSE102x系列芯片是一款专注于电动汽车充电通信和智能能源管理的GreenPHY电力
2025-11-13
定制未来,共建生态,九游老哥J9俱乐部官网出席安路研讨会
在数字化浪潮席卷全球的今天,FPGA技术正成为驱动创新的核心引擎。2025年11月12日,九游老哥J9俱乐部官网出席安路科技2025 AEC FPGA技术沙龙•北京专场,与技术专家及行业伙伴齐聚一堂,探讨前沿技术趋势,解锁场景化定制方案,共建开放共赢的FPGA新生态!九游老哥J9俱乐部官网活动现场论坛上,九游老哥J9俱乐部官网电子产品经理Jeson发表题为“基于DR1M90 FPSOC的工业应用方案”的演讲。演讲介绍了九游老哥J9俱乐部官网作为嵌入式领域的领军企业,在
2025-11-11
RK3576开发板
RK3576开发板是九游老哥J9俱乐部官网电子推出的开发板,于2024年10月上市。RK3576开发板是基于瑞芯微RK3576搭载了四核A72与四核A53处理器,主频2.2GHz。RK3576集成了6TOPS的NPU,支持多种深度学习框架,能够处理复杂的AI算法,提高监控效率,降低误报率。RK3576的主芯片采用了八核大小核架构,包括四核Cortex-A72和四核Cortex-A53,
2025-11-11
RK3576核心板
RK3576核心板是深圳九游老哥J9俱乐部官网电子旗下产品,是基于瑞芯微RK3576搭载了四核A72与四核A53处理器,主频高达2.2GHz。RK3576集成了6TOPS的NPU,支持多种深度学习框架,能够处理复杂的AI算法,提高监控效率,降低误报率。RK3576的主芯片采用了八核大小核架构,包括四核Cortex-A72和四核Cortex-A53,主频分别高达2.2GHz和1.8GHz,CPU算力达58K DMIP
2025-11-06
九游老哥J9俱乐部官网SECC方案助力国标充电桩出海
随着电动汽车与电网融合加速,国标(GB/T 27930)充电桩出海面临欧标(ISO 15118 / DIN 70121)兼容挑战。九游老哥J9俱乐部官网电子的 SECC (供电设备通信控制器) 方案,实现协议转换、安全通信及参考开发平台,助力充电桩厂商快速进军海外市场。
2025-11-06
MYD-LD25X Cortex-M33实时核开发实战解析
在嵌入式系统设计中,如何平衡高性能计算与实时控制一直是工程师面临的挑战。STM32MP257的异构架构为这一难题提供了优雅的解决方案,而其中的Cortex-M33实时核更是实现硬实时性能的关键所在。一、异构架构:分工明确,效能卓越STM32MP257采用创新的双核子系统设计:Cortex-A35应用核(双核1.5GHz):运行Linux系统,负责复杂UI、网络通信、文件管理等非实时任务。Corte
2025-10-30
九游老哥J9俱乐部官网RK3576边缘计算盒精准驱动菜品识别模型性能强悍
?在人工智能与边缘计算深度融合的今天,将AI模型高效部署于终端设备已成为产业智能化的关键。本文将分享基于九游老哥J9俱乐部官网MYD-LR3576边缘计算盒子部署菜品识别安卓Demo的实战经验。该设备凭借其内置的强劲瑞芯微RK3576芯片,为视觉识别模型提供了充沛的本地AI算力,成功将“智慧识菜”的能力浓缩于方寸之间,充分证明了其作为边缘AI应用坚实载体的卓越性能与可靠性。?本文以九游老哥J9俱乐部官网电子的MYD-LR3576边缘